skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hamilton, Wesley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The $$p$$-Laplacian has attracted more and more attention in data analysis disciplines in the past decade. However, there is still a knowledge gap about its behavior, which limits its practical application. In this paper, we are interested in its iterative behavior in domains contained in two-dimensional Euclidean space. Given a connected set $$\varOmega _0 \subset \mathbb{R}^2$$, define a sequence of sets $$(\varOmega _n)_{n=0}^{\infty }$$ where $$\varOmega _{n+1}$$ is the subset of $$\varOmega _n$$ where the first eigenfunction of the (properly normalized) Neumann $$p$$-Laplacian $$ -\varDelta ^{(p)} \phi = \lambda _1 |\phi |^{p-2} \phi $$ is positive (or negative). For $p=1$, this is also referred to as the ratio cut of the domain. We conjecture that these sets converge to the set of rectangles with eccentricity bounded by 2 in the Gromov–Hausdorff distance as long as they have a certain distance to the boundary $$\partial \varOmega _0$$. We establish some aspects of this conjecture for $p=1$ where we prove that (1) the 1-Laplacian spectral cut of domains sufficiently close to rectangles is a circular arc that is closer to flat than the original domain (leading eventually to quadrilaterals) and (2) quadrilaterals close to a rectangle of aspect ratio $$2$$ stay close to quadrilaterals and move closer to rectangles in a suitable metric. We also discuss some numerical aspects and pose many open questions. 
    more » « less